2019 Consumer Confidence Report for Public Water System CITY OF HUDSON OAKS

Este reporte incluye informacion importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (682) 229-2400.

System: City of Hudson Oaks Contact: Mr. Ricky King Phone: 682-229-2400

PWS ID No. TX1840006

This is your water quality report for January 1 to December 31, 2019.

The Hudson Oaks City Council meets on the fourth Thursday of each month at 7:00 p. m. at the City Hall building located at 210 Hudson Oaks Drive, Hudson Oaks, Texas 76087. For more information regarding the city council meetings contact City Secretary, Shelley Major at 682-229-2411. Public participation is encouraged.

THE CITY OF HUDSON OAKS provides treated Groundwater and Purchased Surface Water. Both sources are presented below.

Definitions and AbbreviationsThe following tables contain scientific terms and measures, some of which may require explanation.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Avg: Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water

system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred

and/or why total coliform bacteria have been found in our water system on multiple occasions.

Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum residual disinfectant level or MRDL:

The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial

contaminants.

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to

control microbial contaminants.

MFL million fibers per liter (a measure of asbestos)

mrem: millirems per year (a measure of radiation absorbed by the body)

na: not applicable.

NTU nephelometric turbidity units (a measure of turbidity)

pCi/L picocuries per liter (a measure of radioactivity)

ppb: micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.

ppm: milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

ppq parts per quadrillion, or picograms per liter (pg/L)

ppt parts per trillion, or nanograms per liter (ng/L)

Treatment Technique or TT: A required process intended to reduce the level of a contaminant in drinking water.

6

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

The City of Hudson Oaks provides treated groundwater from the Trinity Aquifer in Parker County and purchases treated surface water from the City of Weatherford from Lake Benbrook in Tarrant County, Texas. The water quality data from the City of Weatherford and the City of Hudson Oaks are presented below, respectively.

City of Weatherford 2019 Water Quality Data- PWS 1840005

About the following tables The following tables list all of the federally regulated or monitored constituents which have been found in your drinking water. The U S EPA requires water systems to test up to 97 different constituents.

	INORGANIC CONTAMINANTS									
Year	Regulated Contaminants	Highest Level at any Sampling Point	Range of Detected Levels	M C L	MC LG	Unit of Measure	Likely Source of Contamination			
2019	Barium	0 065	0 065	2	2	ppm	Erosion of natural deposits, Discharge of drilling wastes, Discharge from metal refineries			
2019	Fluoride	0 543	0 543	4	4	ppm	Erosion of natural deposits, Water additive which promotes strong teeth, Discharge from fertilizer and aluminum factories			
2019	Nitrate	0 0783	0 0783- 0 0783	10	10	ppm	Erosion of natural deposits, Runoff from fertilizer use, Leaching from septic tanks, sewage			
2017	Gross Beta Emitters	4 2	4 2-4 2	50	0	pCı/l	Decay of natural and manmade deposits			

Year or Range	Unregulated Contaminants	Average Level	Range of Levels Detected	Unit of Measure	Likely Source of Contamination
2019	Chloroform	14 4	7 73-23 9	ppb	Byproduct of drinking water disinfection
2019	Bromoform	3 4	2 67-4 24	ppb	Byproduct of drinking water disinfection
2019	Bromodichloromethane	18	11 5-29 1	ppb	Byproduct of drinking water disinfection
2019	Dibromochloromethane	16 4	12 4-22	ppb	Byproduct of drinking water disinfection

TURBIDITY

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea, and associated headaches.

Year	Constituent	Highest Single Measurement	Lowest Monthly % of Samples Meeting Limits	Unit of Measure	Likely Source of Contamination
2019	Turbidity	0 38	100%	NTU	Soil Runoff

SECONDARY AND OTHER CONSTITUENTS NOT REGULATED

(No associated adverse health effects)

<u>Secondary Constituents</u> – Many constituents, such as calcium, sodium or iron, which are often found in drinking water, can cause taste, color and odor problems. The taste and odor constituents are called secondary constituents Although these constituents are not causes for health concern and not required to be reported, a table with this information is presented below.

	in in our in its p						
Year	Constituent	Average of all Sampling Points	Mınımum Level	Maximum Level	Secondary Limit	Unit of Measure	Likely Source of Contamination
2019	Total Dissolved Solids	234	234	234	1000	ppm	Total dissolved mineral constituents in water
2019	Bicarbonate	149	149	149	n/a	ppm	Corrosion of carbonate rocks such as limestone
2019	Total Alkalınıty as CaCO3	151	151	151	n/a	ppm	Naturally occurring soluble mineral salts
2019	Total Hardness as CaCO3	168	168	168	n/a	ppm	Naturally occurring calcium and magnesium
2019	Sulfate	35	35	35	300	ppm	Naturally occurring, common industrial byproduct, byproduct of oil field activity
2019	Sodium	28	28	28	n/a	ppm	Erosion of natural deposits, byproducts of oil field activity
2019	Nickel	Not Detected	-	-	n/a	ppm	Erosion of natural deposits
2019	Magnesium	12 8	12 8	12 8	n/a	ppm	Abundant naturally occurring element
2019	Chloride	40 5	40 5	40 5	300	ppm	Abundant, naturally occurring element, used in water purification, byproduct of oil field activity
2019	Calcium	51 2	51 2	51 2	n/a	ppm	Abundant naturally occurring element
2019	Aluminum	0 077	0 077	0 077	0 20	ppm	Abundant naturally occurring element
2019	рН	8 29	8 29	8 29	n/a	units	Measure of corrosivity of water
2019	Hardness as Ca/Mg	180	180	180	n/a	ppm	Naturally occurring calcium and magnesium

City of Hudson Oaks, PWS ID 1840006

No Source Water Assessment for your drinking water source(s) has been conducted by the TCEQ for your water system. The report describes the susceptibility and the types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information in this assessment allows us to focus our source water protection strategies.'

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2019	1.3	1.3	0.211	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.
Lead	2019	0	15	2.2	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

2019 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	2019	7	0 - 11.3	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

^{&#}x27;* The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year'

Total Trihalomethanes (TTHM)	2019	26	0 - 53.3	No goal for the	80	ppb	N	By-product of drinking water disinfection.
				total				

^{*} The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year'

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Arsenic	2019	1.4	0 - 1.4	0	10	ppb	N	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	2019	0.11	0.083 - 0.11	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2019	0.133	0.116 - 0.133	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2019	2	0.171 - 1.81	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	2019	3.24	3.24 - 3.24	0	5	pCi/L	N	Erosion of natural deposits.
Gross alpha excluding radon and uranium	2019	14	14 - 14	0	15	pCi/L	N	Erosion of natural deposits.
Uranium	2019	2.5	2.5 - 2.5	0	30	ug/l	N	Erosion of natural deposits.

Synthetic organic contaminants including pesticides and herbicides	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Di (2-ethylhexyl) phthalate	2019	26.5	0 - 26.5	0	6	ppb	N	Discharge from rubber and chemical factories.

Disinfectant Residual

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Free and Chloramine	2019	1.22	0.34 to 3.9	4	4	ppm	N	Water additive used to control microbes.

Violations

Lead and Copper Rule

The Lead and Copper Rule protects public health by minimizing lead and copper levels in drinking water, primarily by reducing water corrosivity. Lead and copper enter drinking water mainly from corrosion of lead and copper containing plumbing materials.

Violation Type	Violation Begin	Violation End	Violation Explanation
LEAD CONSUMER NOTICE (LCR)	09/29/2019	12/16/2019	We failed to provide the results of lead tap water monitoring to the consumers at the location water was tested. These were supposed to be provided no later than 30 days after learning the results.
WATER QUALITY PARAMETER M/R (LCR)	01/01/2019	06/30/2019	We failed to test our drinking water for the contaminant and period indicated. Because of this failure, we cannot be sure of the quality of our drinking water during the period indicated.

The City of Hudson Oaks did not sample during the correct quarter of 2019. The City of Hudson Oaks completed the required sampling (lead copper and water quality parameters) and notice the following quarter. All violations have been addressed.